Xilinx: monolithic RFSoC integrates RF signal chain for 5G wireless, cable remote-PHY and radar

Xilinx announced delivery of its Zynq UltraScale+ RFSoC family, a breakthrough architecture integrating the RF signal chain into an SoC for 5G wireless, cable Remote-PHY, and radar. Based on 16nm UltraScale+ MPSoC architecture, the All Programmable RFSoCs monolithically integrate RF data converters for up to 50-75 percent system power and footprint reduction, and soft-decision Forward Error Correction (SD-FEC) cores to meet 5G and DOCSIS 3.1 standards. With silicon samples already shipping to multiple customers, the early access program for the Zynq UltraScale+ RFSoC family is now available.

Zynq RFSoCs combine RF data converters and SD-FEC cores with high performance 16nm UltraScale+ programmable logic and ARM multi-processing system to create a comprehensive analog-to-digital signal chain. While RF to digital signal conditioning and processing is typically segmented into stand-alone subsystems, the Zynq UltraScale+ RFSoC brings analog, digital, and embedded software design onto a single monolithic device for system robustness. Devices in the family feature eight 4GSPS or sixteen 2GSPS 12-bit ADCs, eight to sixteen 6.4GSPS 14-bit DACs, integrated SD-FEC cores with LDPC and Turbo codecs for 5G and DOCSIS 3.1, ARM processing subsystem with Quad-Core Cortex-A53 and Dual-Core Cortex-R5s, 16nm UltraScale+ programmable logic with integrated Nx100G cores, up to 930,000 logic cells and over 4,200 DSP slices.

Applications addressed by the Zynq RFSoC family include remote radio head for massive-MIMO, millimeter wave mobile backhaul, 5G baseband, fixed wireless access, Remote-PHY nodes for cable, radar, test & measurement, SATCOM, and Milcom / Airborne Radio and other high performance RF applications.

Zynq UltraScale+ RFSoC devices now make viable the most bandwidth intensive systems for next generation wireless infrastructure. 5G imperatives—ranging from 5X bandwidth, 100X user data rates, and 1000X greater network capacity—would be unattainable without breakthroughs at the system level. The integration of discrete RF data converters and signal chain optimization in Zynq UltraScale+ RFSoCs allow remote radio head for Massive-MIMO, wireless backhaul, and fixed wireless access to realize high channel density with 50-75 percent power and footprint reduction. Multiple integrated SD-FEC cores enable 10-20X system throughput vs. a soft core implementation for 5G baseband within stringent power and thermal constraints.

Similarly, in next-generation cable broadband services, Zynq RFSoCs provide a combination of small form factor, power efficiency, and hardware flexibility to enable Remote-PHY systems. Distributed access architectures push DOCSIS 3.x PHY functionality from the centralized headend equipment to the Remote-PHY node located closer to consumers. By replacing inefficient analog optical transmission with ubiquitous Ethernet transport, network capacity, scale and performance improves. With RF integration and an LDPC FEC-enabled signal chain, RFSoCs ensure flexible R-PHY deployment for greater spectral efficiency prescribed by DOCSIS3.1.

Zynq RFSoCs also deliver the needed performance and adaptability for key government programs such as the Multi-function Phased Array Radar (MPAR) initiative to combine the functions of several national radar networks into a single system for aircraft and weather surveillance. Because these leading edge systems must operate in real time, the inherent integration of RF-Analog makes the Zynq UltraScale+ RFSoC an ideal solution. Zynq RFSoC devices are currently designed into the Rockwell Collins' Common Module beamformer for the DARPA Arrays at Commercial Time Scales program, which aims to shorten design cycles and in-field updates, while pushing past traditional barriers for delivering radar arrays.   

More Information...

Latest News from Xilinx

Xilinx: automotive qualified Zynq UltraScale+ MPSoC family enable safety critical ADAS
Xilinx: monolithic RFSoC integrates RF signal chain for 5G wireless, cable remote-PHY and radar
Xilinx: SDAccel development environment available for Amazon EC2 F1 instances

ZES Zimmer on testing advanced power electronics

In this video Bernd Neuner from ZES Zimmer talks to Alix Paultre for Electronic News TV at the 2017 Power Electronics Conference in Nuremberg. The discussion deals with the issues involving test and m...


Weidmüller discusses the need for a better signal and power interface

In this video Rene Arntzen from Weidmüller talks to Alix Paultre of Electronic News TV about the importance of a good signal and power interface for industrial equipment. There is currently no good ...


Mouser talks about the state of engineering development today

In this video Mark Burr-Lonnon and Graham Maggs of Mouser Electronics, a major international electronics distributor, talk to Alix Paultre about the state of engineering development today. With massiv...


Infineon launches a new family of configurable industrial drive boards

In this video Infineon explains their new family of configurable industrial drive boards at SPS-IPC Drives 2017. Intended to enable easy setup and deployment, the XMC-based automation boards can handl...


STMicro explains their STSPIN family of single-chip motor drivers

In this video STMicroelectronics explains their STSPIN single-chip motor drivers at SPS-IPC Drives 2017. The STSPIN family embeds can drive motors efficiently and with high accuracy, with an advanced ...


wholesale jerseys