OpenFog: reference architecture adopted by IEEE as official standard for fog computing

The OpenFog Consortium’s OpenFog Reference Architecture for fog computing has been adopted as an official standard by the IEEE Standards Association. The new standard, known as IEEE 1934, relies on the reference architecture as a universal technical framework that enables the data-intensive requirements of the Internet of Things, 5G and artificial intelligence applications.

Fog computing is a system-level horizontal architecture that distributes resources and services of computing, storage, control and networking anywhere along the cloud-to-things continuum. It supports multiple industry verticals and application domains, enables services and applications to be distributed closer to the data-producing sources, and extends from the things, over the network edges, through the cloud and across multiple protocol layers. The OpenFog Consortium was founded more than two years ago to accelerate adoption of fog computing through an open, interoperable architecture.

The OpenFog Reference Architecture, released in February 2017, is based on eight core technical principles, termed pillars, which represent the key attributes that a system needs to encompass to be defined as “OpenFog.” These are security, scalability, openness, autonomy, RAS (reliability, availability, and serviceability), agility, hierarchy and programmability. The reference architecture, and now the IEEE standard, addresses the need for an interoperable end-to-end data connectivity solution along the cloud-to-things continuum.

IEEE standards form the building blocks for product development by establishing consistent protocols that can be universally understood and adopted. This fuels compatibility and interoperability and simplifies product development, and speeds time-to-market.

The massive and growing amounts of data produced, transported, analyzed and acted upon within industries such as transportation, healthcare, manufacturing and energy—collectively measured in zettabytes—is exposing challenges in cloud-only architectures and operations that reside only at the edge of the network. Fog computing works in conjunction with the cloud and across siloed operations to effectively enable end-to-end IoT, 5G and AI scenarios. 


Bs&T at PCIM2018

powerlosstester presenting BsT-pulse 3 phase version and BsT-SQ for powerloss measurement of inductive components new findings of tester, the highest Bs ferrite material D9B for SiC application GaN fe...


Würth and AnDAPT describe their new programmable power solution

In this video an engineer from AnDAPT describes their new programmable power solution and their partnership with Würth at the APEC exhibition  in San Antonio, Texas. Drawing from Würth&...


MAGMENT: Magnetizable concretes, sole enablers for dynamic inductive wireless charging.

MAGMENT is a patented material technology, engineered from cement and magnetic particles from recycled electronic waste. We are the inventors and sole company worldwide to offer both the concrete mate...


A look at Analog Devices' wireless power demonstration at APEC 2018

In this video Steve from Analog Devices walks us through a wireless power transmission demonstration at APEC 2018 in San Antonio, Texas. The LTC4120 is a constant-current/constant-voltage wireless rec...


Analog Devices talks about their Power over Ethernet solutions at APEC

In this video Analog Devices talks about their Power over Ethernet solutions at APEC 2018 in San Antonio, Texas. Their LTC4291 provides four PSE Ports with two power channels per port, and is fully co...


Silicon Labs demonstrates their latest PoE solutions at APEC 2018

In this video John Wilson of Silicon Labs demonstrates their latest Power over Ethernet solutions at APEC 2018 in San Antonio, Texas. The live demonstration shows how a remote device can effectively p...


Vitrek explains their advanced testing solutions at APEC 2018

In this video Vitrek explains their advanced testing solutions at APEC 2018 in San Antonio, Texas. The devices displayed includes their 4700 high-voltage meter, which can measure up to 10kV and can pe...


Dirk Giesen describes the Parasoft tool suite for Embedded Software Development

Are you responsible for embedded software development in your organization? Your goal should be to create safe, secure, and reliable software. To make sure your device will work properly, deploy Paras...


Ross Sabolik of Silicon Labs talks about advanced Power over Ethernet

In this video Ross Sabolik of Silicon Labs talks about smart  Power over Ethernet systems with Alix Paultre at their APEC exhibit in San ANtonio, Texas. As PoE migrates to higher power levels and...


Dialog Semi walks through their latest IC solutions for battery chargers

In this video an engineer from Dialog Semiconductor walks us through their latest ICs for battery chargers at APEC 2018. Dialog's Qualcomm Quick Charge adapter solutions offer high efficiency to e...


Steve Allen of pSemi explains their latest LED driver solution

Steve Allen of pSemi explains their latest LED boost product based on Arctic Sand's two-stage architecture. Their PE23300 has a charge-pump, switched-capacitor architecture that offloads most of t...


Teledyne describes their latest 12-bit Wavepro HD oscilloscope

In this video Teledyne LeCroy describes their latest Wavepro HD oscilloscope to Alix Paultre of Power Electronics News at the company's launch event. The WavePro HD high-definition oscilloscope de...



wholesale jerseys